Calculation of complex singular solutions to the 3D incompressible Euler equations
نویسنده
چکیده
This paper presents numerical computations of complex singular solutions to the 3D incompressible Euler equations. The Euler solutions found here consist of a complex valued velocity field u+ that contains all positive wavenumbers; u+ satisfies the usual Euler equations but with complex initial data. The real valued velocity u = u++u− (where u− = u+) is an approximate singular solution to the Euler equations under Moore’s approximation. The method for computing singular solutions is an extension of that in Caflisch (1993) [25] for axisymmetric flow with swirl, but with several improvements that prevent the extreme magnification of round-off error which affected previous computations. This enables the first clean analysis of the singular surface in three-dimensional complex space. We find singularities in the velocity field of the form u+ ∼ ξα−1 for α near 3/2 and u+ ∼ log ξ , where ξ = 0 denotes the singularity surface. The logarithmic singular surface is related to the double exponential growth of vorticity observed in recent numerical simulations. © 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains
A class of three-dimensional initial data characterized by uniformly large vorticity is considered for the 3D incompressible Euler equations in bounded cylindrical domains. The fast singular oscillating limits of the 3D Euler equations are investigated for parametrically resonant cylinders. Resonances of fast oscillating swirling Beltrami waves deplete the Euler nonlinearity. These waves are ex...
متن کاملRegularity of Euler Equations for a Class of Three-Dimensional Initial Data
The 3D incompressible Euler Equations with initial data characterized by uniformly large vorticity are investigated. We prove existence on long time intervals of regular solutions to the 3D incompressible Euler Equations for a class of large initial data in bounded cylindrical domains. There are no conditional assumptions on the properties of solutions at later times, nor are the global solutio...
متن کاملNon Blow-up of the 3d Euler Equations for a Class of Three-dimensional Initial Data in Cylindrical Domains
Non blow-up of the 3D incompressible Euler Equations is proven for a class of threedimensional initial data characterized by uniformly large vorticity in bounded cylindrical domains. There are no conditional assumptions on the properties of solutions at later times, nor are the global solutions close to some 2D manifold. The approach of proving regularity is based on investigation of fast singu...
متن کامل2 7 Ja n 20 06 A note on ‘ Nonexistence of self - similar singularities for the 3 D incompressible Euler equations
In this brief note we show that the author’s previous result in [1] on the nonexistence of self-similar singularities for the 3D incompressible Euler equations implies actually the nonexistence of ‘locally self-similar’ singular solution, which has been sought by many physicists. Nonexistence of locally self-similar solution We are concerned here on the following Euler equations for the homogen...
متن کاملPotentially Singular Solutions of the 3d Incompressible Euler Equations
Whether the 3D incompressible Euler equations can develop a singularity in finite time from smooth initial data is one of the most challenging problems in mathematical fluid dynamics. This work attempts to provide an affirmative answer to this long-standing open question from a numerical point of view, by presenting a class of potentially singular solutions to the Euler equations computed in ax...
متن کامل